2 2 Fe b 20 08 ISOMORPHISMS BETWEEN LEAVITT ALGEBRAS AND THEIR MATRIX RINGS

نویسندگان

  • G. ABRAMS
  • P. N. ÁNH
  • E. PARDO
چکیده

Let K be any field, let L n denote the Leavitt algebra of type (1, n − 1) having coefficients in K, and let M d (L n) denote the ring of d × d matrices over L n. In our main result, we show that M d (L n) ∼ = L n if and only if d and n − 1 are coprime. We use this isomorphism to answer a question posed in [14] regarding isomorphisms between various C*-algebras. Furthermore, our result demonstrates that data about the K 0 structure is sufficient to distinguish up to isomorphism the algebras in an important class of purely infinite simple K-algebras.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 00 6 Isomorphisms between Leavitt Algebras and Their Matrix Rings

Let K be any field, let L n denote the Leavitt algebra of type (1, n − 1) having coefficients in K, and let M d (L n) denote the ring of d × d matrices over L n. In our main result, we show that M d (L n) ∼ = L n if and only if d and n − 1 are coprime. We use this isomorphism to answer a question posed in [14] regarding isomorphisms between various C*-algebras. Furthermore, our result demonstra...

متن کامل

NILPOTENT GRAPHS OF MATRIX ALGEBRAS

Let $R$ be a ring with unity. The undirected nilpotent graph of $R$, denoted by $Gamma_N(R)$, is a graph with vertex set ~$Z_N(R)^* = {0neq x in R | xy in N(R) for some y in R^*}$, and two distinct vertices $x$ and $y$ are adjacent if and only if $xy in N(R)$, or equivalently, $yx in N(R)$, where $N(R)$ denoted the nilpotent elements of $R$. Recently, it has been proved that if $R$ is a left A...

متن کامل

An Isomorphism Extension Theorem For Landau-Ginzburg B-Models

Landau-Ginzburg mirror symmetry studies isomorphisms between Aand B-models, which are graded Frobenius algebras that are constructed using a weighted homogeneous polynomial W and a related symmetry group G. Given two polynomials W1, W2 with the same weights and same group G, the corresponding A-models built with (W1,G) and (W2,G) are isomorphic. Though the same result cannot hold in full genera...

متن کامل

Rings of Low Rank with a Standard Involution

We consider the problem of classifying (possibly noncommutative) R-algebras of low rank over an arbitrary base ring R. We first classify algebras by their degree, and we relate the class of algebras of degree 2 to algebras with a standard involution. We then investigate a class of exceptional rings of degree 2 which occur in every rank n ≥ 1 and show that they essentially characterize all algeb...

متن کامل

Automorphisms and Twisted Forms of Generalized Witt Lie Algebras

We prove that the automorphisms of the generalized Witt Lie algebras W(m , n) over arbitrary commutative rings of characteristic p > 3 all come from automorphisms of the algebras on which they are defined as derivations. By descent theory, this result then implies that if a Lie algebra over a field becomes isomorphic to W{m, n) over the algebraic closure, it is a derivation algebra of the type ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008